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Abstract. In this paper, we consider time-space trade-offs for reporting
a triangulation of points in the plane. The goal is to minimize the amount
of working space while keeping the total running time small. We present
the first multi-pass algorithm on the problem that returns the edges of a
triangulation with their adjacency information. This even improves the
previously best known random-access algorithm.

1 Introduction

There are two optimization goals in the design of algorithms: the time complexity
and the space complexity. However, one cannot achieve both goals at the same
time in general. This can be seen in a time-space tradeoff of algorithmic efficiency
that an algorithm has to use more space to improve its running time and it has
to spend more time with less amount of space. With this reason, time-space
trade-offs for a number of problems were considered even as early as in 1980s.
For example, Frederickson presented optimal time-space trade-offs for sorting
and selection problems in 1987 [11]|. After this work, a significant amount of
research has been done for time-space trade-offs in the design of algorithms.

In this paper, we consider time-space trade-offs for one of fundamental geo-
metric problems, reporting a triangulation of points in the plane. We assume that
the points are given in a read-only memory. This assumption has been considered
in applications where the input is required to be retained in its original state.
Many time-space tradeoffs for fundamental problems have been studied under
this read-only assumption. For instance, a few read-only sorting algorithms have
been presented under the assumption [6, 14].

There are two typical access models to the read-only input, a random-access
model and a multi-pass model. In the multi-pass model, the only way to access
elements in the input array is to scan the array from the beginning, and algo-
rithms are allowed to make multiple passes over the input. A single pass is a
special case of the multi-pass model. Multi-pass algorithms are more restrictive
than algorithms under the random-access for any element in the input array.
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The multi-pass model has applications where large data sets are stored some-
where such as an external memory and it is more efficient in I/O to read them
sequentially in a few passes. Multi-pass algorithms have been studied recently
in areas including geometry [1,15] and graphs [9, 10].

The goal of our problem is to minimize the amount of working space while
keeping the total running time small. More precisely, we are allowed to use O(s)
words as working space in addition to the memory for input and output for
a positive integer parameter s which is determined by users. We assume that a
word is large enough to store a number and a pointer. While processing input, we
send the answer to a write-only output stream without repetition. An algorithm
designed in this setting is called an s-workspace algorithm.

1.1 Related Works

A triangulation of a set S of n points in the plane is defined to be a maximal
subdivision of the plane whose vertices are in S and faces are triangles, except
for the unbounded face. The unbounded face of a triangulation of S is the region
outside of the convex hull of S. Thus the sorting problem which asks for sorting
n numbers reduces to this problem. Similarly, the problem of computing the
convex hull of n points in the plane reduces to this problem. In the following,
we simply call these problems the sorting problem and the convex hull problem,
respectively.

The optimal trade-offs for the sorting problem and the convex hull problem
are known for both models (the random-access model and the multi-pass stream-
ing model.) Under the random-access model, both problems can be solved in
O(n?/(slogn) + nlog(slogn)) time® using O(s) words of workspace [8, 14]. Un-
der the multi-pass streaming model, both problems can be solved in O(n?/log n+
nlog s) time |7, 13] using O(s) words of workspace and O(n/s) passes of the input
array.

With linear-size working space, a triangulation of S can be computed in
O(nlogn) time. For the case that a space is given as a positive integer parame-
ter s at most n, several results are known for the random-access model while no
result is known for the multi-pass streaming model. Korman et al. presented an s-
workspace algorithm for computing a triangulation of S in O(n?/s+mnlognlog s)
time [12]. In the same paper, they presented an s-workspace algorithm for com-
puting the Delaunay triangulation of S in O((n?/s)logs + nlogslog®s) ex-
pected time. Recently, it is improved to O(n?logn/s) deterministic time [4].
Combining [4] and [12], a triangulation of S can be computed in O(min{n?/s+
nlognlogs,n?logn/s}) time.

The problem of computing a triangulation of a simple polygon has also
been studied under the random-access model. Aronov et al. [2] presented an
s-workspace algorithm for computing a triangulation of a simple n-gon. Their
algorithm returns the edges of a triangulation without repetition in O(n?/s +

3 They state that their running time is O(n?/s + nlogs) for s bits of workspace, but
we measure workspace in words.



nlog slog® n/s) expected time. Moreover, their algorithm can be modified to
report the resulting triangles of a triangulation together with their adjacency
information. For a monotone n-gon, Barba et al. [5] presented an (slog,n)-
workspace algorithm for triangulating the polygon in O(nlog, n) time for a pa-
rameter s € {1,...,n}. Later, Asano and Kirkpatrick [3] showed how to reduce
the working space to O(s) words without increasing the running time.

1.2 Our Results.

We present an s-workspace O(n?/s + nlog s)-time algorithm for computing a
triangulation of a set of n points in the plane. Our algorithm uses O(n/s) passes
over the input array. To our best knowledge, this is the first result on the problem
under the multi-pass model. These bounds are asymptotically optimal, which can
be shown by a reduction from the sorting problem [13].

Our multi-pass algorithm also improves the previously best known algorithm
under the random-access model by Korman et al. which takes O(min{n?/s +
nlognlogs,n?logn/s}) time [4,12] although the multi-pass model is more re-
strictive than the random-access model. It seems unclear whether the algorithm
by Korman et al. [12] can be extended to a multi-pass streaming algorithm.

Our algorithm has an additional advantage compared to the previously best
one. Our algorithm can be extended to report the triangles together with adja-
cency information as well as the edges of a triangulation without increasing the
running time and space. The edge adjacency is essential information in repre-
senting and reconstructing the triangulation. In contrast, the algorithms in [4,
12] report the edges of a triangulation in an arbitrary order with no adjacency
information of them. Furthermore, the algorithm by Korman et al. [12] uses the
algorithm by Asano and Kirkpatrick [3] as a subprocedure, but it is unclear
how to modify the subprocedure to report a triangulation together with edge
adjacency information [2].

2 Reporting the Edges of a Triangulation

In this section, we present an s-workspace O(n?/s + nlog s)-time algorithm to
compute a triangulation of a set S of n points in the plane using O(n/s) passes.
Our algorithm is based on the multi-pass streaming algorithm by Chan and
Chen [7] for computing the convex hull of a set of points in the plane. For a
subset S” of S, we use CH(S') to denote the convex hull of S’.

Chan and Chen presented an algorithm to compute the convex hull of a set .S
of points in the plane by scanning the points O(n/s) times. They consider [n/s]
disjoint vertical slabs each of which contains exactly s points of .S, except for
the last vertical slab. They use two passes to compute the boundary of cH(S)
contained in each vertical slab. For one pass, they find the points of S contained
in the vertical slab using Lemma 1. Then they compute the convex hull of them
in O(slog s) time. For the other pass, they find the part of the boundary of the
convex hull which appears on the boundary of cH(S). In total, their algorithm
takes O(n?/s + nlog s) time and uses O(s) words of working space.



Lemma 1 ([7]). Given a point p € S, we can compute the leftmost s points
lying to the right of p in O(n) time using O(s) words of working space in a
single pass.

2.1 Our Algorithm

Imagine [n/s] disjoint vertical slabs each of which contains exactly s points of
S, except for the last vertical slabs. Let S; be the set of points of S contained
in the ith slab for ¢ € {1,2,...,[n/s]}. By Lemma 1, we can compute all points
in S; by scanning the points in S once using O(s) words of working space if we
have the leftmost point of S;. The pseudocode of the overall algorithm can be
found in Algorithm 1.

Algorithm 1 Computing a triangulation of S

1: procedure TRIANGULATION(S)

2: s < the leftmost point of S

for i + 1to [n/s] do
Compute S; by scanning all points in S once.
Report all edges of a triangulation of S;.
Let T; be the set of points lying to the left of any point in S;.
a < the rightmost point of T; and b < the leftmost point of S;
LowWERTRIANGULATION(a, b, S;)
UPPERTRIANGULATION(a, b, S;)

The overall algorithm (Algorithm 1). We consider all vertical slabs from
left to right one by one. After we process a vertical slab, we guarantee that we
report all edges of a triangulation of the points of S contained in the union of all
previous vertical slabs. First, we compute Sy explicitly in O(n) time by applying
Lemma 1, and compute a triangulation of S7 in O(slog s) time. Assume that we
just considered S;_; for some i € {2,...,[n/s]} and we computed a triangulation
of S1U...US;_1. Let T; be the set of points lying to the left of any point in .5;,
that iS, E = Sl U... USi_l.

Now we handle S;. We compute S; explicitly in O(n) time by applying
Lemma 1, and compute a triangulation of S;. Let a be the rightmost point
of T; and b be the leftmost point of S;. (See Fig. 1(a).)

For two convex polygons C7 and Cs, we say a line segment cycy for ¢; € Cy
and ¢y € Cy a bridge of C; and Cs if it appears on the boundary of the convex
hull of C; and Cs. If a bridge connects the lower chains of C; and Csy, we call
the bridge the lower bridge. Otherwise, we call it the upper bridge.

We traverse the boundary of cH(T;) from a in clockwise order and traverse
the boundary of CH(S;) from b in counterclockwise order until we find the lower
bridge of cH(T;) and cH(S;). Let L; be the polygon whose boundary consists of
the chains we visited, ab and the lower bridge. During the traversal, we compute
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Fig. 1. (a) Starting from ab, we report the edges of a triangulation of L; (the gray
region) and the edges of a triangulation of U; (the dashed region). (b) The edge 7 is
the lower bridge of cH(X) and the convex hull of the points lying to the left of any
point of X.

a triangulation of L;. See Fig. 1(a). The pseudocode of this procedure can be
found in Algorithm 2. We call this procedure LOWERTRIANGULATION.

Similarly, we find the upper bridge of cH(T;) and CH(S;) by traversing the
boundaries of CH(T;) and CcH(S;). Let U; be the polygon whose boundary consists
of the chains we visited, ab and the upper bridge. We call this procedure UPPER-
TRIANGULATION. This can be done a way similar to LOWERTRIANGULATION.
Note that L; UU; = cH(Ti4+1) \ (CH(T;) U cH(S;)). We show how to compute a
triangulation of L; only because a triangulation of U; can be computed analo-
gously.

Computing a triangulation of L; (Algorithm 2). We can construct and
traverse the boundary of CH(S;) in O(slogs) time since we can store CH(.S;)
explicitly. However, this does not hold for cH(T;) since the size of cH(T;) might
exceed O(s). To traverse the boundary of CH(T;) using O(s) words of working
space, we first find the rightmost s points of 7T; using one pass by applying
Lemma 1. Let X denote the set of such s points. We store X explicitly.

Then we compute CH(X) and compute the lower bridge of cH(X) and the
convex hull of points of S lying to the left of any point of X. See Fig. 1(b). We
can compute the lower bridge in O(n) time by considering all points of S lying
to the left of any point of X one by one. Due to this bridge, we can decide which
part of the boundary of CH(X) appears on the boundary of cH(T;). We traverse
the part of CH(X) appearing on the boundary of CH(T;) until we find the lower
bridge of cH(T;) and CH(S;).

Once we reach the most clockwise vertex of CH(X ) appearing on the boundary
of cH(T;), we again find the rightmost s points lying to the left of the endpoint
of v not in X, where v is the lower bridge of cH(X) and the convex hull of
the points lying to the left of any point of X. Then we update X to the set of
these points. Note that X may not be S; for any 1 < j < ¢ in this case. By



construction, the rightmost point of X appears on the lower chain of cH(T;). We
do this until we find the lower bridge of cH(T;) and cH(S;).

Algorithm 2 Computing a triangulation of L;
1: procedure LOWERTRIANGULATION(a,b,S;)

2: (x1,...,z¢) < be the lower hull of S; (from right to left).

3: repeat

4: X < the rightmost s points lying to the left of a including a

5 (y1, ...,y ) < the part of the lower hull of X appearing on cH(T;)
(from left to right)

6 repeat

7 Report the edge x:yy.

8: if yy_, lies to the left of the line containing @, in direction Z;y,; then

9: 't —1

10: else

11: t+—t—1

12: until all points in X U S; lie above the line containing x.y;/

13: v « the bridge of cH(X) and the convex hull of points lying to the left of
any point of X

14: Report ~.

15: a < the endpoint of v not in X

16: until all points in 7; lie above the line containing ~y

2.2 Analyses

In Algorithm 1, Line 2 can be done in O(n) time using a single pass. Line 4
and 6 can be done in O(n) time using O(1) passes due to Lemma 1. Line 5
can be done in O(slogs) time since we compute S; explicitly. Thus, the to-
tal running time is O(n?/s + nlogs + >, 7;), where 7; is the running time of
LOWERTRIANGULATION(, -, S;).

Now consider Algorithm 2. Let ¢; be the number of updates of X for .S;. Line 4
takes O(n) time using a single pass due to Lemma 1. Line 5 takes O(slog s+ n)
time using a single pass. For Lines 6-12, we compute an edge of a triangulation
in each iteration. And each iteration takes O(1) time. Note that Line 12 can
be also done in O(1) time since it suffices to consider the boundaries of CH(S;)
and CH(X) locally. Thus Lines 6-12 can be done in O(n) time in total for all
S;’s. Lines 13-15 take O(n) time using O(1) passes. Therefore, for a fixed i,
the running time of Algorithm 2, except Lines 6-12, is O(slogs + ¢;n). Since
Lines 6-12 can be done in O(n) time for all indices i, the total running time of
Algorithm 1 is O(n?/s +nlogs+ ., 1) = O(n?/s+nlogs+nY_; ;).

We claim that the sum of ¢; over all i’s is O(n/s), which implies that Algo-
rithm 1 takes O(n?/s + nlogs) time using O(n/s) passes. Assume that X is set
to Ay, As, ..., Ax in order when we handle S;. No point in A, appears on the
lower chain of cH(T;) for £ =1,2,...,k—1. Thus, no point in A, appears on the



lower chain of cH(T}) for any j > i. Recall that X is set to a point set whose
the rightmost point appears on the lower chain of CH(T};) when we handle S;.
Therefore, no point in A; is contained in X at any time after we handle .S; for
t=2,3,...,k—1. Therefore, the sum of ¢; is O(n/s), and the total running time
is O(n?/s +nlogs).

Theorem 1. Given a set S of n points in the plane, we can report the edges of
a triangulation of S in O(n?/s+nlogs) time using O(s) words of working space
and O(n/s) passes.

3 Reporting the Triangles with Adjacency Information

Let 7 be the triangulation of S computed by the algorithm in Section 2.1. In
this section, we show how to modify the algorithm to report the triangles of T
together with their adjacency information in addition to the edges of 7. That is,
we report every pair (7,7') of the triangles of T such that 7 and 7" are adjacent
to each other in 7.

We say a triangle 7 of T is an inner-slab triangle if all three corners of 7 are
in the same vertical slab S; for some ¢ = 1,...,[n/s]. Otherwise, we say 7 is a
cross-slab triangle. Note that if two inner-slab triangle are adjacent to each other
in 7T, they are contained in the same vertical slab. Moreover, for an inner-slab
triangle 7 and a cross-slab triangle 7/, we compute 7/ after computing 7. In this
case, we report the adjacency between 7 and 7/ when we compute and report 7’.

Reporting an inner-slab triangle. Consider an inner-slab triangle 7 with
corners in S; for some 7. Recall that we compute all points in .S; explicitly, and
compute a triangulation of them. When we compute a triangulation of them, we
also report the triangles of it with their adjacency information. For a cross-slab
triangle 7’ of T adjacent to 7, we will report their adjacency information when
we compute and report 7'.

Reporting a cross-slab triangle. Consider a cross-slab triangle 7/ whose
rightmost corner lies on S; for some i. This triangle comes from a triangulation
of L; UU;. We compute 7" while we traverse the boundaries of cH(T;) and CH(.S;).
A cross-slab triangle adjacent to 7’ is also computed during this traversal, thus
the adjacency information between them can be computed during the traversal.

Each corner of 7/ lies on the boundary of CH(S;) or the boundary of cH(T}).
If two corners lie on the boundary of CH(S;), there is an inner-slab triangle
adjacent to 7/ contained in S;. The adjacency information between them can be
computed without increasing the running time because we compute the convex
hull of S; explicitly.

Now assume that two corners a and b lie on the boundary of cH(T;). Let
7" be the triangle of T incident to ab other than 7. To report the adjacency
information between 7" and 7"/, we compute 7" together with ab when we traverse



the boundary of cH(T;). To do this, we specify a way to triangulate L; U U; as
described in Algorithm 2.

For L;, we initially set a’ to the rightmost point of X and ¥’ to the leftmost
point of S; for each set X. Then we move o’ along the part of the boundary of
CH(X) appearing on CH(T;) in clockwise direction as much as possible until a'b’
intersects the boundaries of cH(X) and CH(S;). Then we move b’ one step along
the boundary of CH(S;) in counterclockwise direction, and move o’ again. We do
this until we all points in X U S; lie above the line containing a'd’. For U;, we
can compute a triangulation similarly.

Then we have the following lemma.

Lemma 2. Given the conver hull of the set of points in S; for some j =
1,...,[n/s], we can find the lowest triangle of T contained in L; in O(n) time
using O(s) words of workspace and O(1) passes.

Proof. The lowest triangle of 7 contained in L; is incident to the lower bridge
of cH(T}) and cH(S;). By scanning the points of S once, we compute the lower
bridge of cH(T};) and CH(S;). Let a and b be the endpoints of the lower bridge
such that a € cH(Tj) and b € CH(S;). Then, by scanning the points in S once
again, we compute the counterclockwise neighbor a’ of a along the boundary of
CH(T;). Since we maintain the set S; explicitly, we can compute the clockwise
neighbor b’ of b along the boundary of CH(S;) in constant time without scanning
the points of S.

By construction, the triangle with corners a, b, b’ is the lowest triangle of T
contained in L; if b and b’ lie below the line passing through a and a’. Otherwise,
the triangle with corners a, a’, b is the lowest triangle of 7 contained in L;. In any
case, we can report the lowest triangle of 7 in L; using O(s) words of workspace
and O(1) passes. H]

We modify Algorithm 2 as follows. For Line 4, we set X to the set of points
in S; lying to the left of a for a € S; using Lemma 3. Then we can obtain the
triangles of T incident to the part of the lower hull of X appearing on cH(T})
by applying the algorithm for triangulating S; we use in Line 5 of Algorithm 1.
To compute the triangle of T incident to v and contained in cH(T;), we apply
Lemma 2.

Lemma 3. Given any point p € S; for some j =1,...,[n/s], we can compute
Si in O(n) time using O(s) words of workspace and O(1) passes.

Proof. For the first pass, we compute the number of points in S lying to the
left of p. This determines the value of j with p € S;. Then we find the right-
most s points lying to the left of p in O(n) time using a single pass by applying
Lemma 1. One of them is the leftmost point of S;, and we can find it in O(s)
time. We can compute S; using a single pass by applying Lemma 1 again. H

The following theorem summarizes this section.



Theorem 2. Given a set S of n points in the plane, we can report the triangles
of a triangulation of S with their adjacency information in O(n?/s + nlogs)
time using O(s) words of working space and O(n/s) passes.

4 Conclusion

In this paper, we present an s-workspace O(n?/s + slogn)-time algorithm for
computing a triangulation of a set of n points in the plane under the multi-pass
model. Our algorithm uses O(n/s) passes over the input array. It is not only the
first algorithm for this problem under the multi-pass model, but it also improves
the previously best known random-access algorithm [12]. Moreover, its running
time is optimal under the multi-pass model.

One interesting open problem remaining from our work is whether our algo-
rithm can be improved under the random-access model. Under this model, the
best known lower bound is £2(n?/(slogn) + nlog(slogn)) for s < n/logn.
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